<html><body><div style="font-family: times new roman, new york, times, serif; font-size: 12pt; color: #000000"><div><div style="font-family: times new roman, new york, times, serif; font-size: 12pt; color: #000000;" data-mce-style="font-family: times new roman, new york, times, serif; font-size: 12pt; color: #000000;"><div>New makeup spoofing dataset</div><div>---------------------------------------------------------------</div><div>Link: <span class="Object" id="OBJ_PREFIX_DWT2908_com_zimbra_url"><span class="Object" id="OBJ_PREFIX_DWT2910_com_zimbra_url"><span class="Object" id="OBJ_PREFIX_DWT2928_com_zimbra_url"><span class="Object" id="OBJ_PREFIX_DWT2930_com_zimbra_url"><a target="_blank" href="http://www.antitza.com/makeup-datasets.html" data-mce-href="http://www.antitza.com/makeup-datasets.html">http://www.antitza.com/makeup-datasets.html</a></span></span></span></span><br data-mce-bogus="1"></div><div><br></div><div>The Makeup Induced Face Spoofing (<strong>MIFS</strong>) dataset consists of 107 makeup-transformations taken from random YouTube makeup video tutorials. Each subject is attempting to spoof a target identity. Hence we provide three sets of face images: images of a subject before makeup; images of the same subject after makeup with the intention of spoofing; and images of the target subject who is being spoofed.</div><div><br></div><div>Best regards,</div><div>Antitza Dantcheva</div><div><span></span>--------------------------<br>Researcher<br>STARS Team<br>INRIA Sophia Antipolis - Méditerranée <br>2004, route des Lucioles - BP 93 <br>06902 Sophia Antipolis Cedex<br>Phone: <span class="Object" id="OBJ_PREFIX_DWT2929_com_zimbra_phone"><a href="callto:+33%204%2097%2015%2053%2047" data-mce-href="callto:+33%204%2097%2015%2053%2047">+33 4 97 15 53 47</a></span> <br>Website: antitza.com<span></span></div><div><br></div></div></div><div><br></div></div></body></html>